ELP
USER MANUAL

version 1.7
Septemper 2003

prepared by
Peter Ivanyi
Jelle Muylle

Heriot-Watt University
Structural Engineering Computational Technology (SECT) Research Group
Department of Mechanical and Chemical Engineering
Edinburgh, U.K.

Contents

1 Introduction
1.1 ELP programs i e
2 E_Library file types
2.1 The Mesh Definition File
2.2 The Material File e
2.3 The Domain Decomposition File
2.4 'The Mesh Parameters File
2.5 The Finite Element Exror File. o 0L
2.6 The Finite Element Stress File
2.7 The Element Geometric Definition File
3 Structured mesh generation: CUBIC
3.1 Status e
3.2 Syntax e e e e e
3.3 Fileformat
3.4 Entity definitionso L
3.5 Datafileformat oL
3.5.1 Header section e
3.5.2 Point entity definitiono o000 0oL
3.5.3 Surface entity definitiono L.
3.5.4 Link entity definition. oL,
3.5.5 Boundary condition definition section 0L
3.6 Examples for parametric definition o000
4 2D Finite element analysis: FEM
4.1 Status e e e e
4.2 Syntax o e e e e e e e e e e
4.3 OVErvIEW oo e e e e e e e e
4.4 Program limitations L oo

15
17
18
20
21
22

25
25
25
25
25
26
27
27
28
30
30
32

5

6

Error analysis: ADAPT

5.1 Status o e e e e
5.2 Syntax L e e e e e e
5.3 Overview e e e e e e

5.4 Program limitations L oo oo

6.1 Status L
6.2 Synmtax oL e e e e e
6.3 Overview L e e e e e
6.4 Help o . e
6.5 Program limitations oL

6.6 Alternative platforms. oL Lo oo

Editing and modifying E_Library filess MDFTOOLS
7.1 CHKMDF e
711 Status oL e e
712 Syntax e e e e e e
713 Overview e
7.2 CLEANUP . . . e
7.2.1 Statuso L. e
7.2.2 Syntax e e e e e e
7.2.3 Overview L e e e
7.3 EMP2MPR e
7.3.1 Status oL e
7.3.2 Syntax e e e e e e e e e
7.3.3 Overview L e e e
74 FLOOR e e
741 Status L e e
742 Syntax e e e e e
743 Overview L
7.5 MAKEDOM e
7.5.1 Status e e
7.5.2 Syntax e e e e e e e e e e
7.5.3 Overview e e e e e e e
7.6 MAKEMAT e
7.6.1 Status
7.6.2 Syntax e e e e

39
39
39
39
39

41
41
41
41
42
42
42

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.6.3 OVerview o i i e e e e e e e e e e e e e 49

MAKEMPR e 50
701 Status ... L e 50
T7.2 Syntax e e e e 50
773 Overview L e e e 50
MDF2K e e 51
781 Status 51
7.8.2 Syntax e 51
7.8.3 Overview e e e e 51
MDFMERGE e 52
7.9.1 Status 52
7.9.2 Syntaxo e 52
7.9.3 Overview L e e 52
MPR2EMP e 53
7.10.1 Status L. e e e e e 53
7.10.2 Syntaxo e e 53
7.10.3 Overview i e e e e e e e e e 53
RENUMBER e 54
7111 Status L. e e e 54
7112 Syntax oo 54
7.11.3 Overview e e e e e e e e e e 54
7.11.4 Program limitations L. 54
REV e 55
7121 Status 55
7122 Syntaxo 55
7123 Overview e e e e e e e e e e 55
SPHERE e 56
T.13.1 Status L. e e e e 56
T7.13.2 Syntax L. e e e e e e 56
7.13.3 Overview e e e e e e e e e e 56
VSPH . . e e 57
7141 Statuso L. e e 57
T14.2 Syntax o ..o e e e e e e e e e 57
7143 OVerview i e e e e e e e e e e 57
TRFE . . e e e e 58
7.15.1 Status L. e 58
T7.15.2 Syntax o ..o e e e e e e e e e 58

7.15.3 Overview o L e e e
7.15.4 Syntax of transformation file00 L.
7.15.5 Coordinate systemo oo

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

3.2
3.3
3.4

3.5

3.6

7.1
7.2

The element node orders L o 8
An example with TRIANG1 elements 9
An example with TRIANG2 elements 10
An example domain decomposition with TRIANG1 elements 17
An example element mesh parameter definition 18
An example nodal mesh parameter definition 19
An example for geometric definition o000 24

Conventions for the entity definition, (a) uniform quadrilateral, (b) nonuni-

form quadrilateral and (c) triangular entities 26
Surface definition (a) without and (b) with “referencing points” 29
Referenced node in the first surface entity 29

LINK_DIRECTION values and the corresponding direction of the one dimen-
sional elements, arrows also show the order of the definition of the elements
according to LINK DIVISTION v v v it it e e et et e 30

Boundary condition generation defined by two reference points for an area,
the same boundary conditions will be generated for the points inside and

on the edge of the shadedarea 32
The real domain) (a) and the unit square domain Q (b) for the complex

example 33
Result of rev test 10 -0 90 =y. 55
Coordinate systemo 59

Chapter 1

Introduction

This document contains the user manuals for the different tools bundled in ELP. ELP
stands for E_Library Package. It is a series of general purpose finite element analysis and
design tools developed by the Structural Engineering Computational Technology (SECT)
research group at Heriot-Watt University Edinburgh. All the tools in ELP have in common
that they were created to the same standard, the E_Library.

The purpose of this manual is to explain the usage and behaviour of the different com-
ponents of ELP. It is not the aim of this manual to explain the code or supply developer
information.

1.1 ELP programs

The following programs are described in the chapters of this manual:

CUBIC: a structured mesh generator, which is mainly used as a pre-processor for DR
because of its capacity to handle typical types of membrane features, such as cables,
g-strings and clothes. (Chapter 3)

FEM: a very basic, robust finite element analysis program for 2D meshes. (Chapter 4)

ADAPT: generates finite element errors and mesh parameters for an adaptive remeshing
of a 2D mesh. (Chapter 5)

E_PLOT32: viewing and printing of meshes, subdomains and mesh parameters in an
easy to use windows interface. (Chapter 6).

MDFTOOLS: a series of basic editing tools to check and modify mesh definition files
(Chapter 7).

IMPORTANT

IMPORTANT

Chapter 2

E_Library file types

The E-Lib format supports meshes of a single element type and mixed meshes. The E-Lib
mesh file format takes the form of a series of keywords followed by one or more data items.
For example,

NELEMENTS_TRIANG1 120

denotes that the mesh contains 120 elements of type TRIANGT1.

Most keywords are optional, but those which are declared must be in a strict, predefined
order. This order automatically accounts for dependencies between the data.

The format also allows the use of file comments. If the first non-white character on a line
is the # character, then all remaining text on that line is ignored. Two or more lines
can be commented out by enclosing the lines inside a /* and */. The opening /* must
be the first two characters on the first comment line and */ the first two characters on
the last comment line. All text on the line following /* and */ is ignored. The /*...*/
comments must not be nested, although they can contain # comments. Blank lines are
also permitted.

There are currently seven types of data file — the mesh definition (.mdf), geometric defi-
nition (NURBS curve) (.gmf), materials (.mat), domain decomposition (.dom), element
or nodal mesh parameters (.mpr), stresses (.ste) and finite element errors files(.fee). The
mesh definition file contains the main description of the mesh. The other files describe
additional properties of the mesh or they represent a state of the mesh.

The following sections describe the keywords and keyword data for the above data files.
Each section contains a table which lists the keywords in the order they must be declared
and defines the associated keyword data. The data type — whether it is an integer (i),
real (r) or a character string (s) — is also given, where, for example, ‘i 3*r’ denotes that
the data consist of an integer followed by three reals. Units, where relevant, are enclosed
in square brackets |[...].

Keyword data consisting of a single data item must follow the keyword on the same line.
For vectors and matrices, each vector component or matrix row must start on a new line
and each line must begin with an integer index. Unless otherwise stated, this index is
either the vector component number or matrix row index. All keyword data strings must
be enclosed in double quotes.

2.1 The Mesh Definition File

The mesh definition file (.mdf) contains the main description of the mesh.

At present twelve different elements types are supported — five one dimensional (LINK1,
LINK2, LINK3, LINK4, LINKS5), five triangular (TRIANG1, TRIANG2, TRI-
ANG3, TRIANG4, TRIANGS5), two quadrilateral (QUAD1 and QUAD3), one
tetrahedral (TETRAH1) and one three dimensional block element (BLOCK1). These
element types are defined in Figure 2.1 which shows the order in which the element nodes
must be labelled and in Table 2.1 which gives a short description as well. With the excep-
tion of the TRIANG2 and QUADS3 elements, individual elements have uniform material
properties. TRIANG2 and QUAD3 elements are composed of layered composite mate-
rials referred to as composite materials of type 1.

3
3
. T
LINKI-5 2
6 5
1 2 / \ 4
1 4 2
TRIANGI-5 3
TRIANG2
4
7 1 5
g 3 4 QUADI
1 ’ 6 7
> 2 s~

QUAD3 2
1 3

BLOCK1

TETRAHI1

Figure 2.1: The element node orders

An example mesh (Figure 2.2) definition file is shown in the following

An example mesh definition file

TITLE "An example mesh"
NMESHPOINTS 6
NNODES 6
NELEMENTS_TRIANG1 4

MESHPOINT_COORDINATES

1 0.000 0.000 0.000
2 3.000 0.000 0.000
3 6.000 0.000 0.000
4 0.000 3.000 0.000
5 3.000 3.000 0.000
6 6.000 3.000 0.000
NODES_TRIANG1
1 1 2 4
2 2 5 4
3 2 3 5
4 3 6 5

IMPORTANT

Element Type Description Number of Number of

Vertices Nodes

LINK1 Truss 2 2
LINK2 Cable 2 2
LINK3 Fixed tension 1-D link 2 2
LINK4 Fixed force density 1-D link 2 2
LINKS5 Geodesic string 2 2
TRIANG1 Constant strain triangular 3 3
TRIANG2 A combined constant strain 3 6

plane stress and constant

moment plate bending

simple facet triangular
TRIANG3 Solid triangular 3 3
TRIANG4 Membrane triangular 3 3
TRIANGS5 Constant stress triangular 3 3
QUAD1 Plane stress quadrilateral 4 4
QUAD3 Mindlin plate quadrilateral 4 9
TETRAH1 Tetrahedral 4 4
BLOCK1 Block 8 8

Table 2.1: The element types

4 5 6

@ @
© ®

1 2 3

Figure 2.2: An example with TRIANGI1 elements

The first keyword TITLE, is compulsory and specifies the title of the mesh. The title can
be used to annotate output such as the display in a plot program and, as with all string
arguments, must be enclosed in double quotes.

A mesh is defined in terms of a set of mesh-points which are joined by straight lines to
form the edges or surfaces of the elements.

A distinction is made between the terms mesh-point, vertex and finite element node. A
mesh-point is a point in space which may or may not form an element vertex, whereas a
finite element node (or simply node) is a point on an element used for function interpolation
during the finite element analysis. Unlike mesh-points, nodes need not coincide with the
element vertices. (See Figure 2.3.)

NMESHPOINTS is the keyword for the number of mesh-points defined in the mesh
definition file and NNODES defines the total number of finite element nodes in the mesh.
The coordinates of the mesh-points follow the keyword MESHPOINT COORDS. All
three of the keywords NMESHPOINTS, NNODES and MESHPOINT COORDS
are compulsory. The keyword NELEMENTS_TRIANGT1 act both to declare the type
of elements in the mesh and to give the number of the element. If this number is zero
then the keyword should be omitted. At least one of the keywords which defines the

4 11 5 6
@ &) JAN
@ O vertex (mesh-point)
10 9 @ ms O finite lement node
/\ mesh-point
& = ©) VAN
1 7 2 3

Figure 2.3: An example with TRIANG2 elements

element type must be declared and for each such keyword present there must also be
the corresponding keyword like NODES_TRIANGT1 etc. The data for these keywords
define the node indices of each element in turn in the order given in Figure 2.1. Element
vertex nodes are always labelled before non-vertex nodes and for two dimensional elements,
labelling occurs in an anti-clockwise direction.

Another example is presented to demonstrate the difference between mesh-point, vertex
and finite element node. The geometric arrangament of the elements can be seen in
Figure 2.3 while the generated mesh file is the following:

Example with TRIANG 2 elements

TITLE "An example mesh"
NMESHPOINTS 6
NNODES 10
NELEMENTS_TRIANG2 2

MESHPOINT_COORDINATES

1 0.000 0.000 0.000
2 3.000 0.000 0.000
3 6.000 0.000 0.000
4 0.000 3.000 0.000
5 3.000 3.000 0.000
6 6.000 3.000 0.000
NODES_TRIANG2
1 1 2 5 7 8 9
2 1 5 4 9 11 10

NOTE All other keywords are optional except in cases where the declaration of one keyword im-
plies that one or more further keywords will be declared later. For example, if the number
of boundary condition nodes is defined
(NBOUNDARY _CONDITION NODES) then so must the nodal boundary condi-
tions (BOUNDARY_CONDITIONS), see example below.

10

An exhaustive list of possible keywords in an .mdf file is presented in Table 2.2a,b,c .

For the use of keywords not discussed here see the relevant section in the documentation.

11

Keyword

Keyword Data

Data Type

TITLE

NMESHPOINTS
NNODES
NELEMENTS_LINK1
NELEMENTS_LINK2
NELEMENTS_LINK3
NELEMENTS_LINK4
NELEMENTS_LINKS5
NELEMENTS_TRIANG1
NELEMENTS_TRIANG2
NELEMENTS_TRIANG3
NELEMENTS_TRIANG4
NELEMENTS_TRIANGS5
NELEMENTS_QUAD1
NELEMENTS_QUAD3
NELEMENTS_TETRAH1
NELEMENTS_BLOCK1
NBOUNDARY_CONDITION_NODES
NLOADED_NODES
NMATERIALS

NCOMP_MATERIALS_TYPE1
NNURBS_CURVES
TIMESTEP

NTIMESTEPS

NINTERNAL_TIMESTEPS
NEXTERNAL_TIMESTEPS

DAMPING_FACTOR
BETA
GAMMA

Mesh title

Number of mesh-points

Number of nodes

Number of LINK1 elements
Number of LINK?2 elements
Number of LINK3 elements
Number of LINK4 elements
Number of LINKS5 elements
Number of TRIANGT1 elements
Number of TRIANG2 elements
Number of TRIANGS3 elements
Number of TRIANG4 elements
Number of TRIANGYS elements
Number of QUAD1 elements
Number of QUADS3 elements
Number of TETRAH1 elements
Number of BLOCK1 elements
Number of boundary condition nodes
Number of loaded nodes

Total number of materials including those
declared in composite materials

Number of type 1 composite materials
Number of NURBS curves
The value of the timestep

Number of time-steps

This keyword and the pair of keywords
NINTERNAL_TIMESTEPS and
NEXTERNAL_TIMESTEPS are
mutually exclusive

Number internal and external time-steps

These data enable time-stepping to be
broken down into a series of
NEzternal Timesteps sets of
NinternalTimesteps time-steps

(See NTIMESTEPS)
Viscous damping factor
Newmark’s § integration constant

Newmark’s <y integration constant

Table 2.2: (a) The mesh definition file keywords and keyword data (cont.)

12

Keyword Keyword Data Data Type
NSTRESS_POINTS_LINK1 Number of stress points in a LINK1 element i
NSTRESS_POINTS_LINK2 Number of stress points in a LINK2 element i
NSTRESS_POINTS_LINK3 Number of stress points in a LINK3 element i
NSTRESS_POINTS_LINK4 Number of stress points in a LINK4 element i
NSTRESS_POINTS_LINKS5 Number of stress points in a LINK5 element i
NSTRESS_POINTS_TRIANG1 Number of stress points in a TRIANGI1 element i
NSTRESS _POINTS_TRIANG2 Number of stress points in a TRIANG2 element i
NSTRESS POINTS_TRIANG3 Number of stress points in a TRIANG3 element i
NSTRESS_POINTS_TRIANG4 Number of stress points in a TRIANG4 element i
NSTRESS_POINTS_TRIANGS5 Number of stress points in a TRIANGS5 element i
NSTRESS_POINTS_QUAD1 Number of stress points in a QUADI1 element i
NSTRESS_POINTS_QUAD3 Number of stress points in a QUAD3 element i
NSTRESS_POINTS_.TETRAH1 Number of stress points in a TETRAHI element i
NSTRESS_POINTS_BLOCK1 Number of stress points in a BLOCK1 element i
MESHPOINT_COORDS x-,y- and z-coordinates of the mesh-point i 3*r
NODES_LINK1 Node indices of each LINK1 element i 2%
NODES_LINK2 Node indices of each LINK2 element i 2%
NODES_LINK3 Node indices of each LINK3 element i 2%
NODES_LINK4 Node indices of each LINK4 element i 2%
NODES_LINK5 Node indices of each LINKS5 element i 2%
NODES_TRIANGI1 Node indices of each TRIANG1 element i 3%
NODES_TRIANG2 Node indices of each TRIANG2 element i 6%
NODES_TRIANG3 Node indices of each TRIANGS3 element i 3%
NODES_TRIANG4 Node indices of each TRIANG4 element i 3%
NODES_TRIANGS5 Node indices of each TRIANGS5 element i 3%
NODES_QUAD1 Node indices of each QUAD1 element i 4%
NODES_QUAD3 Node indices of each QUADS3 element i 9%
NODES_TETRAH1 Node indices of each TETRAH1 element i 4%
NODES_BLOCK1 Node indices of each BLOCK1 element i 8%
BOUNDARY_CONDITIONS Nodal boundary conditions —

For each boundary condition node, the node
index followed by, for each degree of freedom,
the string ”FREE” if no boundary
conditions are imposed, "FIXED?” followed
by a real displacement [m], or »SPRING”
followed by a non-negative spring-constant

[Nm~1]. The displacement argument
specifies an initial displacement of a node.
The spring constant enables elastic

forces to be modelled.

Table 2.2: (b) The mesh definition file keywords and keyword data (cont.)

13

Keyword

Keyword Data Data Type

LOADS

MATERIALS_LINK1
MATERIALS_LINK2
MATERIALS_LINK3
MATERIALS_LINK4
MATERIALS_LINKS5
MATERIALS_TRIANG1
COMP_MATERIALS_TRIANG2

MATERIALS_TRIANGS3
MATERIALS_TRIANG4
MATERIALS_TRIANGS5
MATERIALS_QUAD1
COMP_MATERIALS_QUAD3

MATERIALS _TETRAH1
MATERIALS_BLOCK1
REMESH_DATA

Nodal loads ir

For each loaded node, the node index followed
by the applied load [N] for each degree of

freedom

Material name of each LINK1 element is
Material name of each LINK2 element is
Material name of each LINKS3 element is
Material name of each LINK4 element is
Material name of each LINKJ5 element is
Material name of each TRIANG1 element is
Composite material name of each is

TRIANG2 element

Material name of each TRIANGS3 element is
Material name of each TRIANG4 element is
Material name of each TRIANGYS5 element is
Material name of each QUAD1 element is
Composite material name of each QUAD3 is
element

Material name of each TETRAH1 element is
Material name of each BLOCK1 element is

Defines the beginning of NURBS definition

Table 2.2: (c) The mesh definition file keywords and keyword data

14

IMPORTANT

2.2 The Material File

The materials file (.mat) contains the properties of the material and composite material
declared in the mesh definition file. Any number of materials can be defined and not just
those used by the current mesh. This enables a number of different meshes to use a single
materials file. The materials and composite materials can be defined in any order.

Each definition of material properties begins with the keyword MATERIAL and ends
with the keyword END. Type 1 composite material properties begin with the keyword
COMP_MATERIAL_TYPE1 and must also end with the keyword END. Tables 2.3
and 2.4 define the property keywords.

Keyword Keyword Data Data Type
MATERIAL Material name s
MAT_TYPE Material model index i
DENSITY Density r
YMOD Isotropic Young’s modulus r

This keyword and the x-,y- and z-direction
Young’s moduli keywords are mutually exclusive

YMOD_X x-direction Young’s modulus r
YMOD.Y y-direction Young’s modulus r
YMOD_Z z-direction Young’s modulus r
THICKNESS Thickness r
POISSONS_RATIO Poisson ratio r
IPARAMn n-th integer property, n =1,...,6 i
DPARAMn n-th double precision property, n =1,...,20 r
END

Table 2.3: The material property keywords and keyword data

Keyword Keyword Data Data Type
COMP_MATERIAL_TYPE1l Type 1 composite material name S
NLAYERS Number of layers i
LAYER _MATERIALS Material name of each layer is
LAYER _THICKNESSES Thickness of each layer ir
END

Table 2.4: The type 1 composite material property keywords and keyword data

The structure offers a possibility to introduce new material properties which are not listed among
the keywords. For integer values IPAR AMn and for real values DPARAMn should be used.

When new material property is defined, do not forget to document that which parameters corre-
spond to which material property.

In the case of the composite material the thicknesses can have any value and their sum is not
checked.

An example .mdf with materials would be the following.

15

While the corresponding .mat file looks like this.

2.3 The Domain Decomposition File

The domain decomposition file (.dom) specifies the subdomains into which the elements have been
partitioned (Table 2.5). The keywords NSUBDOMAINS and SUBDOMAINS_TRIANG1
etc. specify the number of subdomains to be created and the partition indices for the various
element types. The indices must lie between 1 and the number of subdomains inclusive and the
number of each element type must be consistent with the number of that type defined in the mesh
definition file.

Keyword Keyword Data Data Type
NSUBDOMAINS Number of subdomains i
SUBDOMAINS_LINK1 Subdomain index of each LINK1 element ii
SUBDOMAINS_LINK2 Subdomain index of each LINK2 element ii
SUBDOMAINS_LINK3 Subdomain index of each LINK3 element ii
SUBDOMAINS_LINK4 Subdomain index of each LINK4 element ii
SUBDOMAINS_LINKS35 Subdomain index of each LINK5 element ii
SUBDOMAINS_TRIANG1 Subdomain index of each TRIANGT1 element ii
SUBDOMAINS_TRIANG2 Subdomain index of each TRIANG2 element ii
SUBDOMAINS_TRIANG3 Subdomain index of each TRIANGS3 element ii
SUBDOMAINS_TRIANG4 Subdomain index of each TRIANG4 element ii
SUBDOMAINS_TRIANG5 Subdomain index of each TRIANGYS element ii
SUBDOMAINS_QUAD1 Subdomain index of each QUAD1 element ii
SUBDOMAINS_QUAD3 Subdomain index of each QUAD3 element ii
SUBDOMAINS_TETRAH1 Subdomain index of each TETRAH1 element ii
SUBDOMAINS_BLOCK1 Subdomain index of each BLOCK1 element ii

Table 2.5: The domain decomposition file keywords and keyword data

An example domain decomposition file is shown for Figure 2.2
An example domain decomposition file
NSUBDOMAINS 2

SUBDOMAINS_TRIANG1
1 1

2 1
3 2
4 2

Figure 2.4: An example domain decomposition with TRIANGI elements

17

2.4 The Mesh Parameters File

The mesh parameters file (.mpr) defines the element or nodal mesh parameters of each element or
node. The number of element mesh parameters for each element type must equal the number of
elements defined in the mesh definition file. The keywords for the different element types is shown
in Table 2.6.

When the mesh parameters are defined on a nodal basis the NODAL_MESHPARAMS keyword
should be specified and after that the mesh parameter for each mesh-point should also be defined.

Keyword Keyword Data Data Type
NODAL_MESHPARAMS Mesh parameters for each node ir
MESHPARAMS_LINK1 Element mesh parameter of each LINK1 element ir
MESHPARAMS_LINK2 Element mesh parameter of each LINK2 element ir
MESHPARAMS_LINK3 Element mesh parameter of each LINK3 element ir
MESHPARAMS_LINK4 Element mesh parameter of each LINK4 element ir
MESHPARAMS_LINK5 Element mesh parameter of each LINKS5 element ir
MESHPARAMS_TRIANG1 Element mesh parameter of each TRIANG1 element ir
MESHPARAMS_TRIANG2 Element mesh parameter of each TRIANG2 element ir
MESHPARAMS_TRIANG3 Element mesh parameter of each TRIANGS3 element ir
MESHPARAMS_TRIANG4 Element mesh parameter of each TRIANG4 element ir
MESHPARAMS_TRIANG5 Element mesh parameter of each TRIANGS element ir
MESHPARAMS_QUAD1 Element mesh parameter of each QUAD1 element ir
MESHPARAMS_QUAD3 Element mesh parameter of each QUADS3 element ir
MESHPARAMS_TETRAH1 Element mesh parameter of each TETRAH1 element ir
MESHPARAMS_BLOCKI1 Element mesh parameter of each BLOCK1 element ir

Table 2.6: The element mesh parameters file keywords and keyword data

An example element mesh parameters file is shown below and in Figure 2.5, which corresponds to
the mesh in Figure 2.2.

An example element mesh parameters file

MESHPARAMS_TRIANG1
1 0.1

2 0.
3 0.
4 0.

w NN

0.2 0.3

0.1 0.2

Figure 2.5: An example element mesh parameter definition

An example nodal mesh parameters file is shown below and in in Figure 2.6, which corresponds
to the mesh in Figure 2.2. It should be noted that Figure 2.6 is NOT equivalent to Figure 2.5.
However it is possible to convert nodal mesh parameters to element mesh parameters and vica
versa by the tools MPR2EMP and EMP2MPR, see Sections 7.10 and 7.3.

18

0.1 0.2 0.3

0.1 0.2 0.3

Figure 2.6: An example nodal mesh parameter definition

19

2.5 The Finite Element Error File

The finite element errors are stored in the finite element error file (.fee). One error value must
be defined for each element (Table 2.7). Even in the case of TRIANG2 and QUADS3 elements
which are layered finite elements only one value should be defined for one element.

Keyword Keyword Data Data Type
FEERRORS_LINK1 Finite element error of each LINK1 element ir
FEERRORS_LINK2 Finite element error of each LINK2 element ir
FEERRORS_LINK3 Finite element error of each LINK3 element ir
FEERRORS_LINK4 Finite element error of each LINK4 element ir
FEERRORS_LINKS5 Finite element error of each LINKS5 element ir
FEERRORS_TRIANG1 Finite element error of each TRIANG1 element ir
FEERRORS_TRIANG2 Finite element error of each TRIANG2 element ir
FEERRORS_TRIANG3 Finite element error of each TRIANGS3 element ir
FEERRORS_TRIANG4 Finite element error of each TRIANG4 element ir
FEERRORS_TRIANGS5 Finite element error of each TRIANGS element ir
FEERRORS_QUAD1 Finite element error of each QUAD1 element ir
FEERRORS_QUAD3 Finite element error of each QUADS3 element ir
FEERRORS_TETRAH1 Finite element error of each TETRAH1 element ir
FEERRORS_BLOCK1 Finite element error of each BLOCKI1 element ir

Table 2.7: The finite element error file keywords and keyword data

An example finite element error file is shown for Figure 2.2

An example finite element error file

FEERRORS_TRIANG1

1 0.0021
2 0.0032
3 0.0123
4 0.0001

20

IMPORTANT

2.6 The Finite Element Stress File

The element stresses are defined in the stress file (.ste).
for each element must be defined in the .mdf file with the corresponding keyword, like
NSTRESS_POINTS_LINKI1, etc. For each stress point a line is defined consisting of 6 compo-
nents, e.g. normal stresses in the x, y and z directions, the three shear stresses. Other interpretation
is possible as well, e.g. the first three components store the principal stresses while the other three
components store the angles of the principal directions. Any of the components can be ignored,
e.g. in a plane problem only the first three components will be used, as the two normal stresses

The number of stress points

and a shear stress, or in the case of truss elements only one component is used.

In the case of TRIANG2 and QUAD3 elements the stresses are defined at the stress points per
layer per element, therefore it is a requirement that the material file is available for these elements.
For all other elements the existence of the material file is not necessary to load/write stresses.

Table 2.8 shows the possible keywords.

An example finite element stress file is shown for Figure 2.2

Keyword

Keyword Data

Data Type

STRESSES_LINK1
STRESSES_LINK?2
STRESSES_LINKS3
STRESSES_LINK4
STRESSES_LINK5
STRESSES_TRIANG1
STRESSES_TRIANG2
STRESSES_TRIANGS3
STRESSES_TRIANG4
STRESSES_TRIANGS5
STRESSES_QUAD1
STRESSES_QUADS3
STRESSES_TETRAH1
STRESSES_BLOCK1

6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components
6 available components

6 available components

of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses
of stresses

of stresses

i

i 6*r
i 6*r
i 6*r
i 6*r
i 6*r

i 6*r

iii 6*

i
i
i

i

i 6*r
i 6*r
i 6*r

i 6*r

iii 6*

i

i

i 6*r

i 6*r

Table 2.8: The stress file keywords and keyword data

An example stress file

Triangl stresses
element index

#
#
Stress point index
#
#

Szigma x Szigma y Szigma z Tau xy Tau yz Tau zx
STRESSES_TRIANG1
11 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00
1 2 7.000e+00 8.000e+00 9.000e+00 10.000e+00 11.000e+00 12.000e+00
2 1 13.000e+00 14.000e+00 15.000e+00 16.000e+00 17.000e+00 18.000e+00
2 2 19.000e+00 20.000e+00 21.000e+00 22.000e+00 23.000e+00 24.000e+00
3 1 25.000e+00 26.000e+00 27.000e+00 28.000e+00 29.000e+00 30.000e+00
3 2 31.000e+00 32.000e+00 33.000e+00 34.000e+00 35.000e+00 36.000e+00
4 1 37.000e+00 38.000e+00 39.000e+00 40.000e+00 41.000e+00 42.000e+00
4 2 43.000e+00 44.000e+00 45.000e+00 46.000e+00 47.000e+00 48.000e+00

21

2.7 The Element Geometric Definition File

The element geometric definition file .gmf defines the boundary of a finite element problem using
Non-Uniform Rational B-Splines (NURBS).

There are two most common nonlinear mathematical forms in geometric modeling for curve and
surface representation, one is implicit and another is parametric polynomial forms. The implicit
form has the advantage that circles, conics, and primitive quadric surfaces, such as cylinders,
spheres and cones can be concisely and precisely represented. A disadvantage of the implicit
form is that free-form curves and surfaces, which also important in geometric modeling can not
be represented. With parametric polynomials, such as polynomial B-splines, one can represent
and manipulate free-form curves and surfaces; but unfortunately, circles, conics and the quadric
primitives cannot be represented precisely. Non-uniform Rational B-spline (NURBS) is a geometric
modeller that offers the advantages of both forms.

Despite the versatility of NURBS in our implementation only “cubic” NURBS are implemented.
Cubic NURBS are defined by two end points and two control points. (All other manipulation of
NURBS, such as degree elevation, Bezier Curves conversion, knot-removal and local smoothing or
modification is not present in the current implementation.)

The element geometric definition file (.gmf) file contains the following keywords:

e NENDPOINTS: Number of end points used for the geometric modelling.

e NNURBS_CURVES: Number of NURBS curves.

e ENDPOINT_COORDINATES: A list of coordinates of end points. These nodes will be
referred by their node number in the curve specifications. (Good practice to use the same
mesh points here as they are in the mesh. In this case the compatibility between the mesh
and the geometric definition can always be ensured.)

e NURBS_CURVE: Defines each NURBS curve.

e DEGREE: The number of freedom for the NURBS curve. At the moment it must always be
equal to three!

¢ CONTROL_POINTS: The four control points for Cubic NURBS curve.

e WEIGHTS: The value of weights for the four control points.

The geometric definition file should only be used together with the remeshing data extensions of
the mesh definition file. These extensions are not covered in the main definition of the MDF syntax
and can be best explained by the following example.

Figure 2.7a shows one coarse triangle defined by nodes 1,2 and 3. On the side between nodes 1
and 2 a NURBS curve C1 is defined. The curve is cubic (degree 3) and stretches from node 1
where it has paramete 0.0 to node 2 where it has parameter 1.0. Two control points determine the
shape of the curve. They have coordinates (0,-10,0) and (10,-10,0). The weights for these control
points are set to 0.5. Figure 2.7b shows how the remeshed triangle may look like when three nodal
meshparameters were defined with value §=0.8.

The following three files show how to create the curve definition in the geometric definition file
and how to assign it in the mesh definition file.

22

23

(0,-10,0) (10,-10,0)
[} []

(b)

Figure 2.7: An example for geometric definition

24

Chapter 3

Structured mesh generation:

CUBIC

3.1 Status
name of executable(s) | cubic | cubic.exe
platform(s) irix | linux | win32 command line
current version v1.0
date July 2003
release stable
E_lib filetypes *.mdf
own filetypes *.gen
3.2 Syntax

Usage: cubic filename [options]
Options:
-h Print help, this screen

3.3 File format

This chapter describes the file format for the CUBIC structured mesh generator program. The
extension of the input file must be .gen. This file also follows the E_Library conventions with
regards to keywords, comments and empty lines.

3.4 Entity definitions

Figure 3.1 shows the conventions for the definition of the different entity types. The origin of the
local, element coordinate system is the first node of the geometric entity. The 2D surfaces are
defined in an anti-clockwise manner which ensures that the final finite elements will also be defined
in a counter-clockwise manner. The first local coordinate direction (§) is parallel with the edge
defined by the first and the second nodes of the geometric entity. In the case of 2D geometric
entities the second local coordinate direction (n) is parallel with the edge determined by the first
and the last node of the entity. The first and second nodes determine the first side, the second
and third node specifies the second side and so on. The nodes are created and numbered in a row
as it is also shown in Figure 3.1 for all 1D and 2D entity types.

25

r=—-—+---"4---- A A
I 1 : :
n+l Int2 1 2n Fr-r—-——1———~=—~=|=—=~——~=—----

[+
]

Figure 3.1: Conventions for the entity definition, (a) uniform quadrilateral,
(b) nonuniform quadrilateral and (c) triangular entities

3.5 Data file format

The input to the program is a textual data file which describes the geometric model of the structure.
The data structure has been designed in such a way that the sequence of mesh definition can be
carried out easily at one step. The file starts with a header section, then lists the point entities, the
two and the one dimensional entities and finally the boundary conditions. Comment and empty
lines can be inserted at any line in the file, because these lines are automatically ignored during the
reading of the input file. The comment lines start with a “#” sign. Most of the data is provided
in a keyword-data format. The information should be placed into one line, new lines cannot be
started in the middle of the data definition.

26

TITLE "this is the descriptive title"

NNODES i
NSURFACES j
NLINKS k

(GEN_MATERIAL)
(NMATERIALS 1)
(NBC_NODES m)
(NBC_SIDES n)

Table 3.1: Header section of the geometric data file

3.5.1 Header section

The header section of the input file is defined in Table 3.1 where the TITLE keyword defines the title
of the project, the NNODES keyword defines the number of point entities, the NSURFACES keyword
defines the number of 2D entities and the NLINKS keyword defines the number of 1D entities. Later
in the data file the above given number of entities should be specified. The entities are not defined
in the order of their dimension, like first points, one dimensional and finally two dimensional
elements, because the two dimensional entities are thought to be the main components of the
structure, while the one dimensional entities are considered as added components. In spite of this,
it is possible to generate a structure containing only one dimensional elements.

The bracketed keywords are optional. The GEN_MATERIAL keyword simply specifies that for the
final mesh material information should be generated. The next NMATERIALS keyword provides the
maximum number of user definable material types. If only the first keyword is specified, then all
finite elements will have the default material definition, which is assigned to them according to
their type. In this case all of the same element types will have the same material. If the second
keyword is defined, then extra material definition is allowed by the user. This means that it is
possible to assign different material to all finite elements generated from the same geometric entity.
The geodesic strings (link type 5 according to the E-lib specification [4]) are exceptions, because
their material cannot be overdefined, they will always have the default material definition. The
last two keywords NBC_NODES and NBC_SIDES define the number of boundary condition points and
the number of boundary condition sides.

3.5.2 Point entity definition

In this section those points are defined by their three coordinate values, which are used in the later
sections to define higher dimension entities. The number of points given in this section must be
the same as NNODES defined in the header section, but it is not necessary to use all the defined
points. Those points, which are not referenced by their index in the later sections are ignored and
they will not appear in the final mesh.

The format of this section is shown in Table 3.2, where x1-coord, y1-coord and z1-coord provide
the position of the first point in the global coordinate system. The definition of all points are similar.

NODE_COORDINATES
1 xl-coord yl-coord zl-coord
2 x2-coord y2-coord z2-coord

i xn-coord yn-coord zn-coord

Table 3.2: Point entity definition in the geometric data file

27

3.5.3 Surface entity definition

In this section the two dimensional entities, the quadrilateral and the triangular surfaces are
defined. They can be defined in any order, but their numbering should be consecutive starting
from one and the total number of these entities should be equal to NSURFACES specified in the header
section. At the moment the triangular surfaces can be defined only with straight edges, while the
quadrilateral surfaces are defined as cubic patches. A special case of the cubic patch definition is
when the quadrilateral surface has straight edges. To help the insertion of one dimensional elements
into the final mesh (like geodesic strings) those one dimensional elements which are part of the
surface are also defined in this section. The format of the surface entity definition is presented in
Table 3.3.

SURFACE n
SHAPE TRIANG | QUAD | 3 | 4
ELEMENT_TYPE TRIANG1 | TRIANG3 | TRIANG4 | TRIANG5 |

[QUAD1]
DEFINITION [LINEAR | PARAMETRIC | POINT]
nodes | [nodes consts]
N_DIVISIONS n [n]
(DIVISION_WEIGHTS
weights
weights
< weights >)
(LINK_DIRECTION 110 110 <11 0>
LINK_DIVISION
division
division
< division >
LINK_TYPE
types
types
< types >)
(MATERIAL n)
[DIAGONAL 1 | 2 | SHORTEST | LONGEST]
END

Table 3.3: Surface entity definition in the geometric data file

The bracketed sections are optional, the square brackets ('[’,’]’) surround options which can be
defined only for quadrilateral geometric entities and the (’<’, ’>’) brackets contains expressions
only for the triangular geometric entities. The vertical line (’|’) is written between options, from
which at least one should be defined. n represents an integer value. The SHAPE keyword specifies
the form of the surface which can be quadrilateral or triangular in shape. A triangular geometric
entity is simply defined by its corner nodes after the DEFINITION keyword. On the other hand the
quadrilateral geometric entity can be defined in three different ways. In the case of the LINEAR
definition the four corner nodes should be supplied, in the case of the POINT 16 nodes should be
specified to define a cubic patch and in the case of the PARAMETRIC four corner nodes and the
derivatives are required to define the cubic patch. The order of the derivatives for the parametric
definition is:

X& Y€ Z€ Xn Yn Zn XEW an Z&n (3-1)

A node can be a reference to a previously defined point entity or to a generated node of one of
the entities. Allowing the later case of point referencing the definition of the surface topology can
be simplified. Two examples are shown in Figure 3.2 where the surfaces do not have to be cut
up into further pieces to ensure the compatibility between the adjacent surfaces. The format of
the reference point is either s n x y if it references a node in a two dimensional entity or 1 n x
if it references a node in a one dimensional entity, where n is the index of the entity and x and y

28

define the position of the node in the local coordinate system of the referenced geometric entity
(see Figure 3.1). An entity can reference only such an entity in which the mesh generation has been
finished. For example, s 1 1 3 references a node in the first surface entity which is in the first
column and in the third row of the to be generated points. The example is shown in a quadrilateral
and in a triangular surface in Figure 3.3.

@ @

(a) (b)

Figure 3.2: Surface definition (a) without and (b) with “referencing points”

surface 1

@Ysululu3 / o
N

® /SQLIJ

& surface 1

row number
S=ISEE

row number
S = N [[+

® o e
| 02O @ [, 0mmEE

13 column number & column number

=
©

Figure 3.3: Referenced node in the first surface entity

The ELEMENT_TYPE keyword specifies the type of the finite element which will be generated in the
geometric entity. Quadrilateral elements cannot be generated in a triangular geometric entity. The
name of the element types are references to the available element types in the E-lib specification [4]
because the generated final finite element mesh will comply the E-lib specification. The DIVISION
keyword specifies the number of divisions on the sides of the entities. In the case of a triangular
entity all sides are divided into equal number of divisions, but if required the divisions can have
different lengths on all sides. In the case of the quadrilateral entities the first integer number
specifies the division of the first and the third sides, while the second number specifies the division
on the second and the fourth sides. If no more data is specified before the END keyword, then the
geometric entities are divided uniformly and no one dimensional element will be inserted into the
surface or to the edge of the surface.

The lines after the optional DIVISION_WEIGHT keyword specify the division weights on the sides.
The weights can be any real numbers except zero. If the weight is zero, the program will use
one as a weight. The specified weights are normalised. The weights are either specified as

29

a series of double numbers or using the syntax [3] of “n (d)” where the d real number is
considered n times after each other. Any combination of the two syntaxes is also acceptable. The
LINK_DIRECTION keyword specifies whether there are one dimensional elements to insert into the
surface. The position of the one (‘true’) values specify the side which the one dimensional elements
will be parallel with (see Figure 3.4). The LINK_DIVISION and LINK_TYPE keywords specify the
position and the type of the one dimensional elements. The available types comply with the E-lib
specification [4] which allows five types of one dimensional element at the moment. The positions
of the one dimensional elements are given as a series of integer values.

The first integer value in the list specifies the distance from the corresponding side. The distance
is expressed in terms of the generated rows of elements. The other values in the list are increments
from the previous position. An example is shown in Table 3.4. Finally the material can be defined
by the MATERIAL keyword. The number n specifies that which user defined material should be
assigned to all of the generated surface elements in the surface entity. The number cannot be
larger than NMATERIALS defined in the header section. The final keyword DIAGONAL can be used
to control the division of quadrilateral elements into triangles in a quadrilateral geometric entity.
The default value is SHORTEST which defines that the shortest diagonal of the two diagonals will be
used in the geometric entity. The other options allow to use the longer, first or second diagonal.

010 001
Figure 3.4: LINK_DIRECTION values and the corresponding direction of the

one dimensional elements, arrows also show the order of the
definition of the elements according to LINK_ DIVISION

3.5.4 Link entity definition

In this section the one dimensional entities are defined. They can be defined in any order, but their
numbering should be consecutive starting from one and the total number of these entities should
be equal to NLINKS specified in the header section. At the moment these elements can be defined
only as straight lines. The format of the link entity definition is presented in Table 3.5. Comments
about the nodes, elementy type, division of the element and user definable material can also be
applied for these types of element. The difference is that for the one dimensional elements it is not
necessary to define the DIVISION.

3.5.5 Boundary condition definition section

The final section contains the boundary condition definitions. Geometrically two types of boundary
condition can be defined: point or line (or area for quadrilateral surfaces). In the final mesh format
only point boundary conditions exist, according to the E-lib specification [4], therefore all boundary
conditions are translated into a point boundary condition. The format of the boundary condition

30

LINK_DIRECTION 1 1
LINK_DIVISION

2 2

021

LINK_TYPE

33

355

+2

R Y AU, SO

—
\—-\,——/\-\ﬂ/
@ surface
+2 +1
Line |Type
—_—— - 3
————— 5

Table 3.4: Example for the definition of one dimensional elements in a surface entity

LINK n

ELEMENT_TYPE LINK1 | LINK2 | LINK3 | LINK4 | LINK5

DEFINITION nodes
(N_DIVISIONS n)
(DIVISION_WEIGHTS
weights)
(MATERIAL n)
END

Table 3.5: Link entity definition in the geometric data file

definition section is presented in Table 3.6. First the point boundary conditions are listed. The
point boundary conditions can be defined only for the point entities and they can be listed in
any order. The only requirement is that the number of the point boundary conditions should be

equal to NBC_NODES specified in the header section. The bc_type can be “"FREE"”, “"FIXED" d”

or “"SPRING" d” where d is a real number and expresses the support displacement or the spring

constant respectively.
BOUNDARY_CONDITIONS

point_entity_index_1 bc_type
point_entity_index_2 bc_type

point_entity_index_m bc_type

ref _pnt_1 ref_pnt_2 bc_type
ref_pnt_3 ref_pnt_4 bc_type

ref_pnt_ 5 ref_pnt_6 bc_type

bc_type
bc_type

bc_type

bc_type
bc_type

bc_type

bc_type
bc_type

bc_type

bc_type
bc_type

bc_type

Table 3.6: Boundary condition definition in the geometric data file

The boundary condition sides are defined by two “reference points” in an entity and they must lie
on a straight line. The “reference point” definition is explained in section 3.5.3. A special case is
when the entity is a quadrilateral surface and the two reference points mark an area as shown in

31

Figure 3.5. In this case the same boundary condition will be generated for all points inside the
area, including the side and corner points.

surface 2
s.2.4.1
® / N, @

I}
@ Lsg2u1u3 ng

Figure 3.5: Boundary condition generation defined by two reference points
for an area, the same boundary conditions will be generated for
the points inside and on the edge of the shaded area

First the boundary condition “sides” are generated in the order of their definition. If there are
overlapping areas then the boundary conditions of the points in the overlapping area will be
redefined and only the later definition will be stored. Finally the boundary condition points are
defined and they may redefine the boundary condition for a point again. At every occasion of
a redefinition of a boundary condition the program issues a warning message. The order of the
generation of the boundary conditions and the possibility of the redefinition of previously defined
boundary conditions allows, that at corners of areas or at intersection of boundary condition lines
such a boundary condition can be defined which may be a combination of the different crossing
boundary conditions.

3.6 Examples for parametric definition

An example is shown in Table 3.7. On the left-hand side the geometric file definition and on
the right-hand side the generated mesh is shown. The values of the PARAMETRIC definition are
determined according to Figure 3.6. In Figure 3.6a the real domain () is shown. The straight
lines determine the quadrilateral surface and the dashed lines are the required shape of the surface.
In Figure 3.6b the unit square domain (Q) is presented. The orientation of the real domain and the
unit square domain is the same, in this case it is counter-clockwise. To determine the derivative
values for the geometric file which are the components of the tangential vectors in the ¢ and
n directions in the global coordinate system someone has to inspect the orientation of the &5

coordinate system at the particular node.

For example at node 1 in the Q domain the ¢ coordinate direction points from node 1 to node
2, which in the real domain 2 is a vertical vector. This is represented in the file as 0 3 0. The
n direction in the Q domain points from node 1 to node 4 which in the real domain € can be
determined in a similar way (continuous 7 vector at node 1 in Figure 3.6). On the other hand in
the real domain the side between node 1 and 4 is not a straight line and the n derivative (tangential
vector) at node 1 is actually a horizontal vector as shown in Figure 3.6a by a dashed vector. The
representation of this vector in the geometric file is =4.71 0 0. The length of the vector should
be equal to the real side length to ensure equidistant distribution of the points. In this case the
quarter length of the perimeter of a circle with a 3 unit radius is (2rm/4 =~ 4.71). The last three
values for node 1 in the geometric file are zero since there is no “twist” defined. The effect of the
“twist” is demonstrated in Table 3.14

Another example where the same square surface is defined by the LINEAR and the PARAMETRIC
method is shown in Table 3.8. Some other possible variations of the square are shown in Table 3.9-
3.14. In the tables all examples are in 2D except the last one, which is a 3D surface.

32

SURFACE
SHAPE QUAD
ELEMENT_TYPE TRIANG3

DEFINITION PARAMETRIC

1 030 -4.71 O 0 000
2 030 -9.42 0 0 000
3-300 0 -9.42 0 000
4-300 O -4.71 0 000
N_DIVISIONS 10 10

Table 3.7: A complex example to show the geometric file definition and the
generated mesh

g

Figure 3.6: The real domain Q (a) and the unit square domain € (b) for the
complex example

33

DEFINITION LINEAR

1234

DEFINITION PARAMETRIC

1100 010 00O

2100 010 00O
3100 010 000
4100 010 00O

Table 3.8: LINEAR and PARAMETRIC definition of a square

DEFINITION PARAMETRIC
1110 010 000

2100 010 00O
3100 010 00O
4100 010 00O

Table 3.9: Example for the definition of cubic surfaces

34

DEFINITION PARAMETRIC

1100 110 000

2100 010 00O
3100 010 00O
4100 010 00O

Table 3.10: Example for the definition of cubic surfaces

DEFINITION PARAMETRIC
1110 110 000

2100 010 00O
3100 010 00O
4100 010 00O

Table 3.11: Example for the definition of cubic surfaces

DEFINITION PARAMETRIC

1100 010 1000

2100 010 00O
3100 010 000
4100 010 00O

Table 3.12: Example for the definition of cubic surfaces

35

DEFINITION PARAMETRIC

1100 010

10 10 O

2100 010 00O
3100 010 00O
4100 010 00O

Table 3.13: Example for the definition of cubic surfaces

O
—
~
[
[£a]
=
<5
~
<
Ay
=
o
]
=
-]
=
[
Fry
23]
a

o O
o O
o O

o O
~—
o O

o O
~—
— N

3101 010 00O
4101 010 00O

Table 3.14: Example for the definition of cubic surfaces

36

Chapter 4

2D Finite element analysis:

4.1 Status
name of executable(s) | fem | fem.exe
platform(s) irix | linux | win32 command line
current version vi.1
date July 2003
release unfinished
E_lib filetypes *.mdf *.mat *.ste
own filetypes -

4.2 Syntax

fem v1.1 SECT Research Group, Heriot-Watt University Edinburgh
usage: fem input output ds
note all filenames are referred to without extensions

input : name of the mesh definition and material file
output : name of the output mesh definition file
ds : displacement scale (e.g. 10)

you might want to renumber the mesh first!
and remove unused nodes!

4.3 Overview

fem is a very limited 2D finite element program which calculates stresses and displacements for
meshes consisting of TRIANG1 and QUAD1 elements only. Loads, boundary conditions and material
assignments should be specified in the input mesh file. Material information should be given in

the material file with the same name as the mesh definition file.

As TRIANG1 and QUAD1 are constant stress elements the output stress file will consist of one stress-
point per element. As fem is a 2D FE package only three stresses will appear in the output stress

file: 04, oy and 74y.

In order to increase the efficiency of the computation and to reduce the calculation times you should
not include any unused nodes in the coordinates array. Renumbering of the nodes to decrease the
bandwidth of the stiffness matrix is also advised. The renumber program can be used for this

purpose. renumber is explained in Section 7.11.

37

FEM

4.4 Program limitations

e Only meshes consisting entirely of one of the two supported element types can be analysed.
e From the material file only YMOD, POISSONS_RATIO and THICKNESS will be taken into account.

e The program gives no status reports and might take ages if you have not renumbered your
mesh.

e The program will crash if the mesh contains unconnected nodes. These are nodes which are
not used in any of the element definitions. Use the cleanup program to remove unconnected
nodes. cleanup is explained in Section 7.2

38

Chapter 5

Error

analysis: ADAPT

5.1 Status

name of executable(s) | adapt | adapt.exe

platform(s)
current version
date

release

E_lib filetypes
own filetypes

irix | linux | win32 command line
vi.1

July 2003

development

*.mdf *.mat *.ste *.fee *.mpr

5.2 Syntax

adapt v1.1 SECT Research Group, Heriot-Watt University Edinburgh
usage: adapt input d mprtype
note all filenames are referred to without extensions

input
d
mprtype

: name of the mesh definition and stress file
: permissible error value

1 for element mesh params

: 2 for nodal mesh params

5.3 Overview

adapt is small error analysis program for the sort of meshes that can be handled by fem. It generates
finite element errors on the basis of the stress file by comparing averaged and non averaged nodal

stresses.

The finite element element errors are then converted into mesh parameters either nodal or element
parameters as specified in the command line. Make sure you choose the right type depending on

what remeshing or viewing you want to do next.

It is always advised to check the generated mesh parameters before a new remeshing run is launched.
Some mesh parameters might be far to small to be realistic. The floor program might be used to

set a lower limit

to the mesh parameters. floor is explained in Section 7.4.

5.4 Program limitations

e Only meshes consisting entirely of one of the two supported element types can be analysed.

e The material file should also be there as material information is required for processing the

finite element errors.

39

e Both material and stress files are expected to have the same name as the mesh definition
file.

40

Chapter 6

Viewing and printing: E_PLOT32

6.1 Status
name of executable(s) | e_plot32.exe
platform(s) win32
current version v2.52
date July 2003
release complete
Elib filetypes x.mdf *.mpr *.dom *.fee *.ste
own filetypes -

6.2 Syntax

run e_plot32.exe from explorer or start menu - run...
or make a shortcut to e_plot32.exe

6.3 Overview

E_plot32 is a native windows 32bit graphical user interface program. It will run on Windows95,
Windows98 and Windows NT 4. The program provides a viewer for all sorts of meshes in the
E_Library mesh definition format.

The user can view the mesh in the following plot configurations:

e plain mesh plot: just shows the mesh connectivity.

e subdomain plot: colours the different subdomains according to the subdomain information
stored in the appropriate subdomain file.

e stress plot: shows a colour representation of all the stresses that are available in the stress
file.

e FEerror plot: plots the distributions of the finite element errors as specified in the FEerror
file.

e mesh parameter plot: makes a plot of the mesh parameters as stored in the mesh parameter
file.

The program can print directly from the menu and also has an export facility to the *.wmf format
which can be read by many vector graphics packages such as CorelDraw and AutoCAD 2D.

41

6.4

Help

For a more detailed explanation of each menu option we refer to the online help system within the

program. Help is available by selecting the Help menu or by simply pressing F1 at any time in the
program.

6.5

6.6

Program limitations

All files should have the same name as the input *.mdf files with the appropriate extensions.
All filetypes are accepted except QUAD3 and BLOCK1.

For meshes containing TRIANG2 elements: only the stresses for layer 0 are shown in a stress
plot.

When exporting a subdomain plot to *.wmf format the subdomain colours are converted to
grayscale. This does not happen with the stress, FEerror or mesh parameter plots.

An export to *.wmf might mess up the scaling of the image. Scale it by a factor 100 to
obtain normal sizes. However this depends on the graphics package you use.

E_plot32 will only accept element mesh parameters for a mesh parameter plot.

Alternative platforms

The viewer technology of E_plot32 was also ported into a Linux and Irix version. These unix
versions of the viewer have limited features and are continuously updated. If required obtain the
most recent information from the author concerning the status of eplx and qmv.

42

Chapter 7

Editing and modifying E_Library
files: MDFTOOLS

The MDFTOQLS are a series of checking, editing and conversion tools to help creating and main-
taining E_Library files. Some of them are batch files, some are small programs. A good knowledge
of scripting or shell languages is advised in the preparation of E_Libary files as there is (so far) no
graphical design utility for the E_Libary standard.

43

7.1 CHKMDF

7.1.1 Status

name of executable(s) | chkmdf

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes * . mdf

own filetypes -

7.1.2 Syntax

Validity checking of an e_lib mesh definition

Usage: chkmdf filename
filename : name of mesh definition file
A1l files should be specified without extension!

7.1.3 Overview

chkmdf is a tool that checks the validity of a mesh definition file. It displays mesh statistics and
performs the following checks:
e Are there any duplicate nodes?

e Are there any invalid elements, i.e. elements in whose definition the same node number
appears twice or more?

o Are there any duplicate elements? Here the node order is not taken into account.

44

7.2 CLEANUP

7.2.1 Status

name of executable(s) | cleanup | cleanup.exe

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf

own filetypes -

7.2.2 Syntax

Remove unconnected nodes from a mesh.

Usage: cleanup input output
input : name of input mesh definition file
output : name of resulting mesh definition file
A1l files should be specified without extension!

7.2.3 Overview

When meshes are adaptively remeshed with mgn using the task REMESH all the nodes of the input
coarse mesh are copied into the resulting file though they might not be used in any of the new
triangles. These unconnected nodes cause problems when renumbering the mesh for bandwidth
reduction.

cleanup removes all unconnected nodes from a mesh definition file. The program only works
with meshes containing only TRIANG1 elements. The topology of the mesh is not altered, only the
numbering of points and the point numbers in the element definition. Boundary conditions and
loads are also renumbered appropriately.

45

7.3 EMP2MPR

7.3.1 Status

name of executable(s) | emp2mpr

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf mpr

own filetypes -

7.3.2 Syntax

Convert element mesh parameters to nodal mesh parameters
by averaging all element mesh parameters connected to a node.

Usage: emp2mpr input output
input : name of input mesh file and mesh parameter file
output : name of output mesh parameter file

A1l files should be specified without extension!

7.3.3 Overview

emp2mpr converts an element mesh parameter file into a nodal mesh parameter file. The program
requires, as an input, the mesh definition file and the element mesh parameter file, while the output
is only a new nodal mesh parameter file. The program only works with meshes containing only
TRIANGLE1 elements.

46

7.4 FLOOR

7.4.1 Status

name of executable(s) | floor | floor.exe

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes *x.mdf *.mpr

own filetypes -

7.4.2 Syntax

Limit the maximum and minimum values of the mesh parameter.

Usage: floor input output
input : name of input mesh file and mesh parameter file
output : name of output mesh parameter file

A1l files should be specified without extension!

7.4.3 Overview

floor is a little utility to alter mesh parameter files. Both nodal and element mesh parameter file
are accepted. The file is parsed and minimum, maximum and average mesh parameter are printed
on the screen. Then the user is asked to specify a new minimum and maximum parameter for this
file.

47

7.5 MAKEDOM

7.5.1 Status

name of executable(s) | makedom

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf dom

own filetypes -

7.5.2 Syntax

Create a domain decomposition file (*.dom).

Usage: makedom [-v|-h|-n<domain>] mdf_file
-v - print version information
-h - print this message
-n<domain> - set domain number (default 1)

7.5.3 Overview

makedom creates a domain decomposition file which is compatible with the input mesh definition
file. By default it generates a domain decomposition where all elements are in one domain. However
it is also possible to specify that all elements should be assigned to a user defined subdomain. For
example makedom -n 2 mesh will generate a domain decomposition file where all elements belong
to subdomain two and the maximum number of subdomains is also equal to two.

48

7.6 MAKEMAT

7.6.1 Status
name of executable(s) | makemat
platform(s) irix | linux | win32 command line
current version v1.0
date July 2003
release stable
E_lib filetypes mdf mat
own filetypes -

7.6.2 Syntax

Creates material information and an example material file

Usage: makemat input output

input : name of input mesh file

output : name of output mesh and material file
A1l files should be specified without extension!

7.6.3 Overview
makemat creates material information for a mesh definition file and it also generates an example

material file (.mat). The program only accepts meshes which contain a single element type.
Moreover the acceptable element types are TRIANG1, TRIANG3 and LINK1.

49

7.7 MAKEMPR

7.7.1 Status

name of executable(s) | makempr

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf mpr

own filetypes -

7.7.2 Syntax

Creates mesh parameter file (element or nodal)

Usage: makempr [-v|-h|-n<meshpram>|-e<meshparam>|-a] mdf_file
-v - print version information
-h - print this message
-n<meshparam> - set value of nodal mesh parameter
-e<meshparam> - set value of element mesh parameter
-a - automatic calculation of nodal mesh parameter (default)

7.7.3 Overview

makempr can create a nodal or element mesh parameter file. When the mesh parameter is explicitly
specified on the command line all mesh parameters in the file will be the specified value. In the
case of the —a option the program determines the minimum edge length at each point and this
minimum edge length will become the nodal mesh parameter at each point.

50

7.8 MDF2K

7.8.1 Status

name of executable(s) | mdf2k

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release development

E_lib filetypes mdf

own filetypes -

7.8.2 Syntax
Converts and MDF file to an LS-DYNA keyword file
describing only the geomtery of the mesh.

Usage: mdf2k file(.mdf) n > out.k
n : the numbering of the nodes and elements starts at n*10000+1

7.8.3 Overview
The mdf2k program converts a mesh geometry to an LS-DYNA keyword file. The created LS-

DYNA file only describes the geometry, no other data is created. The numbering of the nodes and
elements starts at n * 10000 + 1.

51

7.9 MDFMERGE

7.9.1 Status

name of executable(s) | mdfmerge
platform(s) irix | linux
current version v1.0

date July 2003
release development
E_lib filetypes mdf

own filetypes -

7.9.2 Syntax

Merges two mdf files.
Only merges geometry and domain decomposition,
but no loads, bc, etc.

Usage: mdfmerge meshl mesh2 out [d]
meshl: first mesh definition file
mesh2: second mesh definition file
out: output mesh definition file
d : when not zero it also merges decomposition data

7.9.3 Overview

The mdfmerge program merges the geometry of two mesh definition files. When the optional
argument is specified and it is not zero then the program also merges the domain decomposition
data in the mesh. However the program does not merge loads, boundary conditions, materials,
etc.

52

7.10 MPR2EMP

7.10.1 Status

name of executable(s) | mpr2emp

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf mpr

own filetypes -

7.10.2 Syntax

Convert nodal mesh parameters to element mesh parameters
by averaging all nodal mesh parameters of an element.

Usage: mpr2emp input output
input : name of input mesh file and mesh parameter file
output : name of output mesh parameter file

A1l files should be specified without extension!

7.10.3 Overview

mpr2emp converts a nodal mesh parameter file into an element mesh parameter file. The program
requires, as an input, the mesh definition file and the nodal mesh parameter file, while the output
is only a new element mesh parameter file. The program only works with meshes containing only
TRIANGLE1 elements.

53

7.11 RENUMBER

7.11.1 Status

name of executable(s) | renumber | renumber. exe
platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes * . mdf

own filetypes -

7.11.2 Syntax

Renumbers the mesh nodes to reduce the matrix bandwidth.

Usage: renumber input output
input : name of the input mesh definition file
output : name of the resulting mesh definition file

A1l files should be specified without extension!

7.11.3 Overview

renumber is a small program that changes the node indices of a mesh in order to minimize the
bandwidth of the stiffness matrix when this one is build in any finite element package. It changes
the node numbers accordingly in loads and boundary condition nodes.

7.11.4 Program limitations

e renumber works only for single element type TRIANG1 or QUAD1 meshes.

e Only the information within the mesh definition file is altered. Subdomain, stress, finite
element error or mesh parameter information is left untouched.

e The program will crash if the mesh contains unconnected nodes. These are nodes which
are not used in any of the element definitions. Use the MDFTOOL cleanup to remove
unconnected nodes. cleanup is explained in Section 7.2

54

7.12 REV

7.12.1 Status

name of executable(s) | rev

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release development

E_lib filetypes mdf

own filetypes -

7.12.2 Syntax

Revolves quad elements around an axis to create blocks.
The mesh must be in the x-y pane.

Usage: rev mesh n [-o angle] [-x -yl
-0 angle: Open revolution by angle [degree]
-x : Revolution around x axis
-y : Revolution around y axis

Defaults are rotation around x axis and rotation by 360 degrees
to form a closed torus

7.12.3 Overview

The rev program revolves a mesh containing only QUAD1 elements around the z or the y axis to
form block (hexahedral) elements. The program is capable to generate a closed torus or by using
the -o option only a part of a torus. This later case is called open revolution. By default the
program revolves the mesh around the x axis, but specifying the -y option it will revolve the mesh
around the y axis. For example, the command rev test 10 -o 90 -y will generate the mesh as
shown in Figure 7.1. The output of the program is written into the rev.mdf file.

Y
X

Figure 7.1: Result of rev test 10 -o 90 -y

55

7.13 SPHERE

7.13.1 Status

name of executable(s) | sphere

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release development

E_lib filetypes mdf

own filetypes -

7.13.2 Syntax

Generate a surface mesh of a sphere.

Usage: sphere n [-q|-t]

n = number of subdivisions per side
-q = generate QUAD1 elements

-t = generate TRIANG1 elements

7.13.3 Overview

sphere generates a surface mesh of a sphere. The mesh may contain triangle or quad elements.
The program initially generates a cube whose points are then displaced onto the surface of a sphere.
The number of divisions specifies the number of divisions of an edge of the cube. The name of
the output mesh is triangs.mdf when triangle elements are generated and quads.mdf when quad
elements are generated.

56

7.14 VSPH

7.14.1 Status

name of executable(s) | vsph

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release development

E_lib filetypes mdf

own filetypes -

7.14.2 Syntax

Generate a volume mesh of a sphere.

Usage: vsph n
n = number of subdivisions per side

7.14.3 Overview

vsph generates a volume mesh of a sphere. The output mesh will contain hexahedral elements.
The program initially generates a cube whose points are then displaced to form a sphere. The
number of divisions specifies the number of divisions of an edge of the cube. The name of the
output mesh is vsph.mdf.

57

7.15 TRF

7.15.1 Status

name of executable(s) | trf

platform(s) irix | linux | win32 command line
current version v1.0

date July 2003

release stable

E_lib filetypes mdf

own filetypes trf

7.15.2 Syntax

Usage: trf mesh transformation [-N]
mesh : name of the mesh definition file
transformation : name of the transformations file
-N : also transform the geometric model
A1l files should be specified without extension!

7.15.3 Overview

trf is a small tool that allows you to perform geometrical operations on the coordinates array of a
mesh. Mesh connectivity will not be touched. The output of the program is mesh.trf.mdf where
mesh is the input filename.

The geometrical operations that trf can handle are:
e move: move every meshpoint over a fixed vector in space
e scale: scale all meshpoints in the three coordinate directions
e rotate: rotate meshpoints round the coordinate axes

7.15.4 Syntax of transformation file

The transformations file (*.trf) has the following syntax:

NTRFS n /* the number of transformations defined below */
MOVE dx dx dy /* move operation over vector (dx,dy,dz) */
SCALE sx sy sz /* scale operation with scale factors si */
ROTATE ax ay az /* rotate operation around angles ai {-360,360] */

Moreover you can carry out as many operations as you want but some are equivalent:

MOVE dx dy dz == MOVE dx 0 O
MOVE 0 dy O
MOVE 0 0 dz

SCALE SX Sy sz == SCALE sx 1 1
SCALE 1 sy 1
SCALE 1 1 sz

ROTATE ax ay az == ROTATE ax 0 O

ROTATE 0 ay O
ROTATE O 0 az

58

Y

Figure 7.2: Coordinate system

Note that unlike moving or scaling the order of the rotations carried out does matter! So when
you issue a ROTATE ax ay az where none of ax, ay and az are equal to zero, the rotation around
the X axis will be carried out first, then the Y rotation and finally the Z rotation.

7.15.5 Coordinate system

The coordinate system used is shown in Figure 7.2. The X-Y plane corresponds to the screen
and the Z-axis is pointing towards you. The rotation angles are positive when they appear to
be counter-clockwise hen you look into the oriented axis. For example: ROTATE 0 90 0 would
transform the Z axis into the X axis.

59

Bibliography

Chew, P.L., “Guaranteed-Quality Delaunay Triangulations”, Technical Report TR-89-983,
Dept. of Computer Science, Cornell University, 1989.

Muylle, J., Ivényi, P., Topping, B.H.V., “A new point creation scheme for uniform Delau-
nay triangulations”, Engineering Computations, International Journal for Computer Aided
Engineering and Software, 19(6): 707-735, 2002.

PDA Engineering, PATRAN Division, 2975 Redhill Avenue, Costa Mesa, California, USA,
PATRAN Plus User Manual, October 1990.

SECT Research Group, Heriot-Watt University, E-lib User’s Guide, 1999.

60

